
VirtIO-Argo Development: Phase 1

This is a proposal for initial development towards a Linux VirtIO Argo transport device driver and the back-end platform support software to
connect it, to implement some of the prerequisite critical pieces that are suitable for incorporation into upstream projects, and provide
demonstration of the viability of this path.

1 Project: XSM Firewall and Front-end Interface Points
1.1 Destinations

1.2 Rationale

1.3 Plan

2 Project: new Argo Linux driver and userspace
2.1 Destinations

2.2 Rationale

2.3 Plan

2.4 Discussion notes from Topic Call, January 2021

3 Project: unification of the v4v and Argo interfaces
3.1 Destination

3.2 Rationale

3.3 Plan

4 Project: VirtIO-Argo with uXen and PX hypervisors
4.1 Destination

4.2 Plan

5 Project: VirtIO-Argo transport: Virtual Device Discovery
5.1 Destinations

5.2 Rationale

5.3 Discussion notes from Topic Call, January 2021

5.4 Plan

6 Project: IOREQ for VirtIO-Argo
6.1 Destinations

6.2 Rationale

6.3 Plan

6.4 Update 29 Dec 2020:

6.5 Discussion notes from Topic Call, January 2021

7 Project: Port the v4v Windows device driver to Argo
7.1 Destination

7.2 Community Engagement

7.3 Development proposal

8 Project: Hypervisor-agnostic Hypervisor Interface
8.1 Destination

8.2 Rationale

8.3 Credits

8.4 Discussion notes from Topic Call, January 2021

8.5 Proposal from Topic Call, January 2021

8.6 Plan

9 Project: Argo interrupt delivery via native mechanism
9.1 Destination

9.2 Rationale

9.3 Credits

9.4 Discussion notes from Topic Call, January 2021

9.5 Proposal from Topic Call, January 2021

9.6 Plan

10 Related Development Project: Hypervisor-mediated access primitive for IOREQ transfers, VM Introspection
10.1 Destination

10.2 Rationale

10.3 Plan

10.4 Credits

11 Research Proposal: Build and evaluate an asynchronous send primitive
11.1 Rationale

11.2 Credits

11.3 Discussion notes from Topic Call, January 2021

12 Comparison of VM/guest Argo interface options

13 Considerations on system architecture for the new driver structure

14 Initial Use Case: GPU remoting over VirtIO for interdomain graphics

15 December 2020 Review feedback

16 Related material

17 Source for this Document

18 License of this Document

Project: XSM Firewall and Front-end Interface Points

Destinations

XSM policy controls over Argo connections: to upstream Xen

Documentation of XSM policy controls: to upstream Xen

XSM test cases: to be determined: potentially Xen Project or meta-virtualization

Prototype demonstration over an instrumented existing VirtIO transport: to an OpenXT branch

Rationale

The motivation for this proposal is that it:

enables development of the XSM Argo firewall that can be upstreamed to the Xen Community ahead of the further phases of
implementation of the VirtIO-Argo driver components

The XSM Argo firewall should be able to be used without the remaining VirtIO-Argo components, using the existing Linux Argo
device driver and upstream Xen XSM policy extended to support the new firewall

enables a static XSM/Flask policy configuration to govern connectivity between Argo <domain, port> endpoints according to the XSM
labels that have been issued to the VMs at either end

allows the structure of the front-end VirtIO-Argo transport driver to be practically explored

enables the hook points of the Argo access control checks within the hypervisor to be identified and validated

exercises the new XSM Argo firewall replacement: the XSM policy will govern allowed Argo communication connectivity, which will be
adhered to by the client developed for this phase, even if the shared-memory implementation of the transport actually used isn't being
policed by XSM as Argo communication will be

enables exploration of the XSM policy tooling for representing a static XSM firewall to govern Argo connections

shows a running system, without requiring the full VirtIO-Argo implementation

provides reference code for the backend driver work of later development phases to be analysed and developed against

Plan

Demonstrate the integration points for the VirtIO-Argo frontend driver and exercise the Argo XSM firewall

Establish an initial development environment: enable a VirtIO virtual device on Xen, using one of the existing VirtIO transport drivers in
the guest

use that existing transport - eg. virtio-mmio or virtio-pci - over shared memory, to be enabled via temporary software
modifications if necessary -- to provide working driver front and backends for a functional VirtIO virtual device on Xen. eg. virtio
block or virtio net.

note that this does not preclude also using the existing Xen device drivers in the same guest at the same time, for ease of
enabling a running guest.

Instrument the guest VirtIO transport device driver (ie. virtio-mmio or virtio-pci) to insert Argo hypercall operations at the points where
Argo operations will be required with the new virtio-argo transport.

ie. where the VirtIO split driver rings are established, for the virtio-argo transport, the memory allocated to the VirtIO "used ring"
is also registered with the hypervisor as an Argo ring, with permission for a backend domain (eg. dom0, or a hardware domain
or a driver domain) to map it.

allocate a kernel memory buffer to be used as a buffer for incoming driver data read operations, and register it as an Argo ring
for the backend domain to send to.

This buffer will actually not be used in the initial prototype where Argo is not used for the actual transport for driver data,
but ring registration will exercise the Argo XSM firewall at the correct point for when Argo is enabled as the transport.

This will enable an XSM access control check to be performed
AVC log messages will indicate if a refusal occurs

If the Argo register operations are refused, the VirtIO ring setup can be aborted and driver initialization for the
device cancelled, which will match the control flow when MAC policy denies communication for a guest.

when data is sent:
after the descriptor is written to the VirtIO split-driver ring:

phase 1: add a log message to indicate Argo sendv would occur

phase 2: add an Argo sendv operation, which will require the backend domain to have registered a ring to send
to

Development recommended to be performed with Xen and a basic meta-virtualization OE development environment, rather than a full
OpenXT build, as no OpenXT-specific functionality should be required

Test cases needed to validate the XSM policy control over Argo communication
Option to evaluate: launching Xen on QEMU, with XSM enabled and guests containing test cases

New documentation to be written to describe:
The method for configuration of the XSM Argo firewall, so that system firewall policies can be written

Documentation should be suitable for submission to the Xen Community, in conjunction with the XSM Argo firewall
implementation

Project: new Argo Linux driver and userspace

Destinations

Initial: OpenXT

Subsequent: Xen Project; to be followed onwards to the Linux kernel depending upon Xen Community participation

Rationale

An Argo Linux device driver is necessary for the domain running the platform VirtIO-Argo software that implements the virtual device backends,
so that the userspace process that implements the VirtIO device - typically qemu - can invoke the kernel to interact with Argo for interdomain
communication with the remote VirtIO-Argo transport driver in the guest domain.

The current OpenXT Argo Linux device driver is not a suitable codebase for further development, whereas the uXen Linux v4v drivers are high
quality and simpler, and suitable for porting to Argo which has a similar interface to v4v.

The ultimate destination for the device driver should be the upstream Linux kernel, but developing a driver suite to that standard could be
pursued as a separate effort to the initial development.

Plan

The current OpenXT Argo Linux device driver, and the userspace library software that uses it, is derived from the original XenClient v4v Linux
software. There is consensus in the OpenXT community that it needs to be replaced with a new implementation, and on this discussion notes
have been recorded on the OpenXT wiki.

The uXen hypervisor developed by HP / Bromium implements a more recent v4v hypercall and data transport than the original in OpenXT, and
the Open Source Linux guest support software, available at the , and in a zip archive at: . public uXen github repository bromium.com/opensource
There is a recipe for building them in the meta-virtualization layer: https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/tree/recipes-extended
/uxen?h=dunfell

The uXen Linux devices drivers for v4v should be ported to Argo on Xen as a new foundation for development and use of Argo on Linux on Xen.
The abstractions presented to userspace by the new v4v drivers are simpler than those of the current OpenXT Argo driver – eg. they do not
implement the “stream” connection type – so changes will be required in the userspace software too.

The initial scope for the new ported driver is narrower than the existing OpenXT Argo device driver, which supports a general interdomain
transport (eg. enabling DBUS between domains): the focus for the initial port will be to implement what is necessary to support the
communication required for the Virtio-Argo device driver use case.

Note that the uXen v4v driver re-uses the (upstream Linux) VSock AF: it registers a new socket-class using AF_VSOCK as the address-family
, but it is not a VSock transport driver. The uXen v4v driver has identifier a different interface than VSock and sits under the AF_VSOCK address
. This would be a blocker for any upstreaming effort of this, but may be acceptable for enabling a PoC of the VirtIO-Argo transport family id

project. If this driver were not to add a new AF_ARGO, implementing a socket class could avoid some restrictions on the VSock transport
protocols.

To be investigated: the more recent HyperV implementation of VSock (VMCI), which follows the pattern of the hypervisor-specific VSock
transport driver implementation registering with vsock_core, which may allow for a new Argo VSock implementation where ring management, etc.
is handled in a separate driver that reuses the VSock core. Note that does not have a dependency on , which CONFIG_VSOCKETS CONFIG_NET
makes VSock potentially usable on systems that are not networking-enabled.

An alternative to this interaction with VSock or having to make a case for a new socket type would be to implement a new network device driver.
A network driver will support use of familiar networking abstractions and existing networking tools over Argo between domains. Since some
systems that need to support Argo use kernels that are configured without networking - ie. - an additional interface to access CONFIG_NET=n

https://openxt.atlassian.net/wiki/spaces/DC/pages/775389197/New+Linux+Driver+for+Argo
https://openxt.atlassian.net/wiki/spaces/~cclark/pages/1696169985/VirtIO-Argo+Development
https://www.bromium.com/opensource/
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/tree/recipes-extended/uxen?h=dunfell
https://git.yoctoproject.org/cgit/cgit.cgi/meta-virtualization/tree/recipes-extended/uxen?h=dunfell
https://github.com/uxen-virt/uxen/blob/ascara/vm-support/linux/v4vvsock/v4v_vsock.c#L647
https://github.com/uxen-virt/uxen/blob/ascara/vm-support/linux/v4vvsock/v4v_vsock.c#L647
https://github.com/OpenXT/linux-xen-argo/blob/master/vsock-argo/module/argo_transport.c#L478
https://github.com/OpenXT/linux-xen-argo/blob/master/vsock-argo/module/argo_transport.c#L478

Argo functionality can then be provided via a char device. The implementation for these multiple interfaces to userspace should structure the
code so that common functionality, such as ring management logic, is shared between the separate drivers that provide the userspace-
accessible interfaces. The uXen v4v drivers, provide suitable references for this structure.

To be investigated: whether the IOREQ structure is to be adopted for the VirtIO-Argo back end, and whether that means that userspace
processes for device support do not need to know about kernel interaction with Argo. Need to verify that MAC denials that are indicated by
appropriate error code, both for new and existing connections, are handled correctly in userspace.

There are three core uXen v4v drivers of most relevance:

uxenv4vlib
the common library of v4v driver functions

eg. ring registration, interrupt handling, suspend and resume processing

v4vchar : the character device interface to v4v
registers a character device, that implements file operations:

write

poll

flush

fsync

has a task queue for processing incoming data that is scheduled whenever a v4v IRQ occurs

processes received messages from an Argo ring into a message queue within the driver to support sequential processing by
userspace

v4vvsock : the vsock interface to v4v
note that the method of registering the vsock interface in this v4v driver that will affect the acceptability of this driver into
upstream Linux as it currently stands, and will need to be resolved before that path should be pursued

A library of tests to exercise the new drivers will be essential, to gain confidence in their correctness and suitability for use in OpenXT and
elsewhere.

Discussion notes from Topic Call, January 2021

When using VSock as a kernel interface for interdomain transport, it is not necessarily simple to map from an address identifier to a
remote domain: other hypervisor implementations on VSock use pre-known identifiers

Discussed whether a Xen domain is expected to be able to know its own domain id: guidance was given that it is reasonable to assume
and require it.

VSock will likely not be the interface to use for communicating from userspace (eg. QEMU or other emulator) to a domain kernel in
support of the VirtIO-Argo transport backend; however:

Forward direction: the Argo Linux driver shall be built modularly, similar to the uXen v4v driver, with a library core (a misc driver with ring
and interrupt handling logic, etc) plus separate drivers that export different interfaces to userspace for access - ie. VSock can be one and
a separate interface to be used for supporting the needs of userspace components for VirtIO-Argo.

Project: unification of the v4v and Argo interfaces

Destination

Initial: OpenXT

Subsequent: HP/Bromium uXen and the Xen Project, and the Linux kernel

Rationale

Enable common guest software between hypervisors, with compatibility of testing driver software on each platform

Enable communication across nesting levels in systems with multiple hypervisors - see the HAT architecture

Argo in Xen, and v4v in uXen have a common origin, beginning in the original v2v and then the subsequent v4v developed for XenClient, and still
retain a similar structure. Argo was developed for inclusion into the Xen Project hypervisor, adhering to the requirements of that community, and
uXen’s v4v implementation was one of the source code references that informed the development of Argo.

Plan

In the current public Open Source implementations (as of December 2020), the basic primitives in the Xen Argo hypercall interface and the uXen
v4v hypercall interface are similar enough that a Linux device driver could abstract the differences and provide a basic common interface to
userspace, so that the same guest application software could work on a system that uses either v4v or Argo. The uXen v4v interface has more
operations than Argo, and some investigation into the use cases that motivated the new operations, and whether those are applicable to Xen or
OpenXT could be warranted.

There is an intentional enforced policy limitation within uXen that contrains v4v communication between peer domains: the use case for the uXen
hypervisor in the HP/Bromium product does not require allowing that, so it is disabled. Argo will instead be governed by the XSM Argo firewall.
Some communication policy configuration mechanism will be needed for uXen to allow a more liberal v4v policy for communication between
domains, to be configured by the uXen guest mangement software.

Going further than providing a common v4v and Argo interface to userspace software, and implementing a single common hypervisor interface
that incorporates the functions of both, into modified Xen and uXen hypervisors respectively, would provide a good platform for development of
nested interdomain communication on a system running both Xen and uXen. With the VirtIO-Argo device drivers, that should allow for a system
structure that supports hosting virtual device implementations within uXen guests on a Xen system.

Project: VirtIO-Argo with uXen and PX hypervisors

Destination

HP/Bromium uXen

the new PX hypervisor project

Plan

The VirtIO-Argo transport enables the use of Argo for interdomain communication between the guest domain’s virtual devices and the external
platform software that provides the device implementation.

With a uXen hypervisor that implements Argo, the VirtIO-Argo transport driver within the guest could be connected to the uXen device model that
supports the guest, to provide the virtual device implementation. Alternatively, it could be plumbed to connect to an implementation within another
uXen guest VM, with suitable modifications to the uXen tooling.

On a system with a PX hypervisor, it would have the opportunity to apply system-wide Mandatory Access Control to communication paths
between guest VMs of uXen and Xen hypervisors using Argo, which would govern all virtual devices using the VirtIO-Argo transport.

The minutes from a meeting in Cambridge in December 2019 were published to xen-devel:
Notes from December 2019 Xen F2F in Cambridge
These include a section “Naming Method Proposal #2: Externally-connected ports and implicit destinations” that describe the addition of two new
concepts to Argo to support establishing communication between Argo endpoints:

Concept 1: add where messages can be sent (via the sendv op) with only a specified , "implicit destinations" <source Argo port>
leaving unset both the and . The unset destination values are then filled in by <destination domid> <destination Argo port>
the hypervisor by performing an internal lookup from () to obtain a fixed (<source domid>, <source Argo port> <dst domid>,

) for the message destination.<dst Argo port>

Concept 2: allow the toolstack to create and manage the entries in its hypervisor's "implicit destinations" table. This enables the toolstack
to perform "patch-cable"-like connection of ports between guests with its hypervisor, and can be done external to the VMs.

With both of the above in place, a VM can then send messages that specify only the client port, and the hypervisor will complete the destination
VM and destination port, enabling a VM to communicate with
an endpoint determined by the toolstack. This enables the use of well-known client port numbers – ie. agreed between VM and its local toolstack
that manages it – for services eg. "my storage".

A special "destination domid" in the implicit destination table indicates "up to the next hypervisor", for sending messages upwards when nesting.
To complete the nesting communication path, a hypervisor needs a method of receiving messages from its parent and mapping them to its
guests: A per-CPU receive buffer where messages will be delivered into.

Project: VirtIO-Argo transport: Virtual Device Discovery

Destinations

VirtIO-Argo transport driver

Xen and subsequently other Argo-enabled hypervisors

Rationale

Each VirtIO transport device driver is responsible for discovering and surfacing the virtual devices that the platform has made available to the
guest. To do so, the transport driver needs a means of interrogating the platform to discover the devices.

Discussion notes from Topic Call, January 2021

A range of Argo ports are to be reserved and registered as well-known addresses for access to guest services

https://lists.archive.carbon60.com/xen/devel/577800

A platform toolstack or a suitably authorized guest domain can program the destination table in the hypervisor to direct service requests
to their available service endpoints

A guest VM can talk to the VirtIO-Argo device discovery service registered for it by communicating to the well-known port for it.

Plan

See the above: “Project: VirtIO-Argo with uXen and PX hypervisors” where the planned extensions to Argo’s addressing are described, which can
then be used by the VirtIO-Argo transport driver and the toolstacks that support it.

Project: IOREQ for VirtIO-Argo

Destinations

Initial: OpenXT

Subsequent: Xen Project; potentially Qemu

Rationale

The intended destination for the VirtIO-Argo work is to upstream communities and the current VirtIO activity in the Xen Project is oriented around
enabling VirtIO on Xen on Arm, including a port of the Xen on x86 support for IOREQ servers to Arm. This is to support implementation of
userspace software in a driver domain in support of guest virtual devices.

Plan

The Xen Community development mailing list has a relevant thread for VirtIO on Xen, with interest from the Xen on Arm community, as well as at
least one Xen x86 maintainer, which considers using Xen’s IOREQs to support VirtIO data transport:

https://lists.archive.carbon60.com/xen/devel/592351#592351

The work to add IOREQ support to Arm is making progress at the moment, with version 3 of the series posted in late November 2020, specifically
focussed on enabling VirtIO-MMIO transport:

https://lists.xenproject.org/archives/html/xen-devel/2020-11/msg02159.html

[update: v6 is now posted here:
]https://lists.xenproject.org/archives/html/xen-devel/2021-01/msg02403.html

The VirtIO-Argo transport development work needs to take this work in the upstream community into account; eg. consider planning for
integration with it as an optional alternative mode of transport, to co-exist with other transport options on Xen.

Note that the existing IOREQ implementation uses event channels, as does Argo currently, though see the separate project on this page about
interrupt delivery for a potential change to Argo away from that.

To be investigated: XSM policy controls over IOREQ communication and how to correlate these with XSM controls over Argo to ensure that the
system policy is able to express the firewall constraints intended.

Update 29 Dec 2020:

Feedback from the Xen and OpenXT Communities has been that IOREQs will not be required for building an Argo transport for VirtIO. The
IOREQ infrastructure is not a current fit for the Argo transport, with the IOREQ architecture prescribing the use of emulation infrastructure, foreign
mapping privilege, event channels, etc.

Discussion notes from Topic Call, January 2021

Instead of the use of foreign mappings currently used by privileged virtual machines that perform emulation on behalf of other guests in the
IOREQ architecture, a new Device Model Operation (DMOP) hypercall could perform fetches of ranges of guest memory on behalf of the
emulating guest, to provide an alternative data path for supporting virtual DMA data transfers. This same DMOP could also have an immediate
practical application elsewhere for improving the efficiency of VM introspection, lowering the number of hypercalls and decreasing complexity for
retrieval of small numbers of bytes of guest memory.

A DMOP that provides this structure for access, with the remote data being retrieved and transferred by the hypervisor rather than accessed
directly via a foreign memory mapping, is an alternative structure to that provided by Argo for hypervisor-mediated data exchange (HMX). In
contrast to Argo where communicating peer relationships with can be established with ring registration on either side, the proposed new DMOP
mechanism is suitable for a VM relationship where the receiving side is privileged and providing platform services in support of the guest that it
accesses.

Project: Port the v4v Windows device driver to Argo

https://lists.archive.carbon60.com/xen/devel/592351#592351
https://lists.xenproject.org/archives/html/xen-devel/2020-11/msg02159.html
https://lists.xenproject.org/archives/html/xen-devel/2021-01/msg02403.html

Destination

Xen Project

The Windows v4v driver should be ported to Argo, which will enable it use on modern Xen and OpenXT and allow for it to be upstreamed to the
Xen community. It can further be used to enable development of support for VirtIO-Argo virtual device backends in non-Linux domains, and in
support of a VirtIO-Argo transport driver for Windows, to enable VirtIO virtual devices on Windows via Argo.

Community Engagement

Items from the November OpenXT Community Call:

Chris Rogers: working on the uprev of Xen to 4.14, including development to enable upstreaming items from the OpenXT libxl
patchqueue (originally developed by Chris)

to develop new XSM hooks to cover Argo (domain, port) pairs, in conjunction with the domain label, to allow replacement of the
firewall for initial upstream use of Argo.

will acted upon at domain creation (VM start) and enable removal of OpenXT libxl state machine patches that currently support
the Haskell toolstack's firewall configuration at VM start.

Agreement to pursue this work then prompted discussion about moving OpenXT to use the upstream Xen XSM policy

Jason Andryuk: published a script for performing comparisons on XSM Flask policies
https://gist.github.com/jandryuk/685b15055041e70a789edd22a08e43e8

Development proposal

Example grouping of development of aspects of the project, to be distributed among the community according on the availability of project
participants:

New XSM policy controls over Argo communication (including ports) to replace the OpenXT Argo firewall and the libxl state machine
logic to configure the firewall at the correct points in the VM lifecycle

implementation of the Xen XSM Argo hooks, suitable for upstream Xen, and governing (domain, port) pairs

tooling to produce a XSM policy with a firewall configuration

development of new Linux Argo device drivers starting from a port of the uXen v4v drivers to Argo

QEMU backend (qemu, etc) modifications to register Argo rings at suitable points for the frontend VirtIO transport driver to attempt to
send to

bringup of an initial VirtIO device driver on current Xen, using an existing VirtIO transport (eg. virtio-mmio, as referenced by current VirtIO
activity in the Xen Project community), to build a development reference platform

implementation of the VirtIO frontend transport driver modifications to insert Argo operations

Documentation for upstreaming to the Xen Project of the new XSM policy controls to firewall Argo communication
Input can be solicited from members of the Xen Community with perspectives on Argo beyond the OpenXT Community

eg. at Xilinx, Arm, HP, Oracle

Project: Hypervisor-agnostic Hypervisor Interface

Destination

Xen, and then followed by all other hypervisors

Rationale

VirtIO is widely adopted across many hypervisors and guest operating systems. VirtIO standardization is managed by OASIS.

It could be easier for VirtIO community to accept and standardize a new transport interface if it were not tied to an interface specific to a particular
hypervisor, but rather a hypervisor-agnostic interface that any given hypervisor could elect to implement. The VirtIO-Argo transport driver can
then be built upon this interface, and make the same transport device driver be compatible with multiple hypervisors.

The current Argo hypervisor interface presented by the Xen hypervisor, on both x86 and Arm hardware, and for HVM and PV guests, is
implemented as a hypercall that supports the Argo operations.

While hypervisor calls have the advantage of being generally supportable by hypervisors and so the guest driver implementation can be non-arch
specific, it is specific to the Xen hypervisor due to the selection of hypercall number in use and the argument interface for the Argo operations.

On Arm, presents an opportunity to reserve a range of hypercalls that use the 'hvc' instruction for Argo, as a SMCCC standardization
Standardized Hypervisor Service Call, to make Argo available via a hypercall with that identifier on hypervisors that elect to implement it.

On x86, Intel's vmcall and AMD's vmmcall instructions are available for hypercalls from HVM guest VMs, but without the vendors supporting
a standardized central registry of operations. A cross-hypervisor interface for Argo using these instructions could be one option for investigation.
An alternative interface could be built using MSRs instead, given the expectation that every x86 hypervisor must have some logic to trap and

https://gist.github.com/jandryuk/685b15055041e70a789edd22a08e43e8
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=virtio
https://developer.arm.com/architectures/system-architectures/software-standards/smccc

handle some of those, and that every guest OS has the functions to read and write MSRs with non-vendor-specific instructions. Any hypervisor
could then elect to implement that same interface.

For a hypervisor-agnostic MSR interface, a range of identifiers will need to be reserved to guarantee that they will not be used by current and
future processors. Intel guarantees that a range of MSRs (0x40000000-0x400000FF) are always be invalid on bare metal, and software
developers have started using this range to add virtualization-specific MSRs. (See the defines related to HV_X64_MSR_* in Xen for some of the
HyperV ones.)

Other hardware architectures with hypervisors that support paravirtualized guest OSes, or guest kernels that are binary translated, may also not
have access to the vmcall/vmmcall instructions, as per PV guests on Xen. While x86 may present a different means of communicating with the
hypervisor (eg. via an MSR interface) this may not be generally true across all architectures. It is attractive to have a hypervisor interface that is
not too architecture-specific, to avoid incurring complications when porting software to new architectures.

On Arm, the closest equivalent to an MSR interface would be use of System Registers, but this would not allow for reservation of a valid range of
IDs that could be used. The hypercall interface is consequently attractive for Arm, and there is not a clear alternative (other than MMIO or PCI)
that could be used to support PV or binary translated guests.

On x86, the performance cost of using MSRs forcing a direct VMEXIT could be potentially expensive and if so, would be incurred on all
hypervisors using this interface; the motivation for potentially accepting this cost is that standardization of the interface across multiple
hypervisors may enable Argo to be proposed as an hypervisor-agnostic mediated data exchange transport, to ease its acceptance into VirtIO.

From considering the above, a candidate path forwards towards building a proposal to discuss with the VirtIO community:

For x86, design an interface suitable for hypervisor-agnostic mediated data exchange using MSRs
with reference to Xen as the first hypervisor and a second Open Source hypervisor to demonstrate and support the cross-
hypervisor case

also examine whether a vmcall/vmmcall interface could be feasible to standardize across hypervisors, with the same objective:
allow a transport driver to be used unmodified across hypervisors

For Arm, examine the SMCCC standard and determine what a hypercall implementation using one or more reserved identifiers will look
like

For the design of the structure of a new Linux VirtIO-Argo transport device driver, consider how best to define and manage differences in
hypervisor interface mechanism (ie. hypercall, MSR) across architectures (or hypervisors) within the driver code

Review the interfaces of each Argo operation with respect to the needs of the hypervisor interface mechanisms and architecture
requirements

It may be the case that for the Arm architecture, in contrast to x86, the hypervisor-agnostic path is simpler – due to the ability to use a transport
driver using the known hypercall mechanism, in conjunction with new reserved identifiers to be obtained via SMCCC, across multiple hypervisors
– and that this may be sufficient to demonstrate cross-hypervisor compatibility for supporting the proposal to admit the new transport driver into
VirtIO. A corresponding design to be able to support transport driver compatibility on multiple x86 hypervisors still remains important: a MSR-
based implementation enables a phase one implementation, and if resources are available can be followed by implementation of specialized per-
hypervisor adaptation, which could allow hypercall-based interfaces to be used where they are preferred.

For evaluation:

performance

identity / label / policy interop

nested hypervisor interop

HMX per-hypervisor cost: hypervisor changes, hypervisor requirements, guest drivers

use of OVMF firmware to provide a common protocol for guest use that would avoid the need for a single uniform hypervisor interface

Credits

Original suggestion and x86 hypercall interface perspective by Roger Pau Monné of the Xen Community

OVMF firmware suggestion by Daniel Smith of the OpenXT and Xen Communities

Interop evaluation suggestion by Rich Persaud of the OpenXT and Xen Communities

Arm platform perspective review and SMCCC hypercall standardization note by Julien Grall of the Xen Community

Discussion notes from Topic Call, January 2021

hypercalls: difficult for portable across hypervisors (at least on x86)

concern re: MSRs: some hypervisors do not intercept MSR accesses at all
could provoke unexpected behaviour on nested hypervisors

performance of the selected interface mechanism will be critical, whichever selected

alternative options to MSRs exist and are used by other hypervisors
HP/Bromium AX uses CPUIDs

Microsoft Hyper-V uses EPT faults

Arm context: hypercalls may be acceptable on Arm across hypervisors

https://lists.archive.carbon60.com/xen/devel/607332#607332
https://lists.archive.carbon60.com/xen/devel/607380#607380

standard way to to do it; able to implement Argo in either firmware or hypervisor; difference in access instruction

not an option for PV-only hypervisors without hypercalls

Proposal from Topic Call, January 2021

Since it is unlikely that a single mechanism will ever be viable for all hypervisors to support, plan instead to allow multiple mechanisms to be
 and then for what mechanisms the hypervisor it is inteacting with can supportmade available enable the guest device driver to probe

A hypervisor can implement as many mechanisms as is feasible for it

A guest can perform selection between the presented available mechanisms reported by the hypervisor

Preference for mechanisms that are close to platform architecture (ie. well-defined on it)

Ensure that the discovery mechanism is forward-extensible for new mechanisms later

Plan

Documention, community engagement, implementation, measurement, testing, review, code submission and interation.

Project: Argo interrupt delivery via native mechanism

Destination

Xen and guest Argo device drivers

Rationale

Argo currently signals notifications to guest VMs via the Xen Event Channel mechanism. The in-guest software that implements the Xen Event
channel handling is not always present and should not be made a requirement for supporting the VirtIO-Argo transport driver.

To be investigated: delivering interrupts using a native mechanism eg. MSI delivery by using a destination APIC ID, vector, delivery mode and
trigger mode.

Credits

Suggested by Roger Pau Monné of the Xen Community

James McKenzie of Bromium/HP has referenced the interrupt mechanism used for signalling in v4v

Discussion notes from Topic Call, January 2021

MSIs: are ok for guests that support a local APIC

Hypervisors developed after Xen learned from Xen’s experience: register a vector callback
MSI is not necessary

sometimes hardware sets bits

likely architecture-specific; could be hypervisor-agnostic on the same architecture

Vector approach is right; some OSes may need help since allocation of vectors can be hard
eg. an ACPI-type thing or device can assist in communicating a vector to the OS

want: OS to register a vector and the driver to communicate the vector to use to the hypervisor

Want to avoid the extra level of multiplexing when Argo rings are layered on top of Event Channels

Vector-per-ring or Vector-per-CPU? : Vector-per-CPU is preferable
aim: avoid building muxing policy into the vector allocation logic

Scalability, interface design consideration/requirement: Allow expansion
one vector per CPU => multiple vectors per CPU

eg. able to assign different priority for different rings: will need different vectors to make notifications work correctly

to investigate: specify the vector for every ring when registered and allow same vector for multiple rings (fwds-
compatible)

Proposal from Topic Call, January 2021

Vector registration.

Plan

Implement, measure, test, review, submit upstream.

https://lists.archive.carbon60.com/xen/devel/607332#607332
https://lists.archive.carbon60.com/xen/devel/577800?search_string=december%20f2f;#577800

Related Development Project: Hypervisor-mediated access primitive for IOREQ transfers, VM Introspection

See the above Discussion notes on the Project: IOREQ for VirtIO-Argo.

Destination

Xen Project

Investigate a design for a new Device Model hypercall operation (DMOP) to provide hypervisor transfers of requested ranges of remote guest
memory in support of privileged VM services. This project needs to align with new design and development efforts for the hypervisor to provide
virtual IOMMUs since this will affect the data paths involved in I/O emulation.

Rationale

This is a separate project from the work to provide an Argo transport for VirtIO, arising out of the discussion of the IOREQ topic in the January
2021 conference call.

Performance enhancement for VM introspection

Introducing HMX properties to data transfers in the IOREQ system architecture

Plan

Interest of the Xen hypervisor VM introspection community to be explored.

Credits

This idea was proposed by Andy Cooper of Citrix in discussion with Daniel Smith of Apertus Solutions exploring how to enable HMX primitives in
the IOREQ architecture on the Topic Call in January 2021.

Research Proposal: Build and evaluate an asynchronous send primitive

Rationale

The existing Argo send primitive is a simple, synchronous hypercall op for transmission of data into a remote receiver ring. For some use cases,
such as supporting guest framebuffer for virtio-wayland or other VirtIO drivers that currently explicitly use shared memory regions, an alternative
asynchronous delivery primitive may enable use of the Argo transport in use cases that cannot currently be met with the synchronous send
primitive.

An objective for the project is to explore whether higher throughput, lower latency or higher efficiency can be achieved. It is expected that
performance characteristics will differ on different hardware architectures.

Research into this should consider that understanding hardware behaviour and primitives that could be made available on new processor
architectures as an important part of the work.

Different capabilities may be available on modern x86 architecture (though not necessarily present on all classes of CPUs)
Extended page table attributes and virtual functions for operating on pre-programmed address spaces can be investigated for
support of unidirectional or fast transport of bulk data between domains

New processor architectures (eg. RISC-V) on Open Source soft-CPUs enable exploration of the design of new primitives for efficient
support of Hypervisor-Mediated data eXchange

Credits

Interest in asynchronous send raised by Jean-Philippe Ouellet of the Qubes Community

Related recent research into high performance interdomain transports has been identified by Rich Persaud of OpenXT
See the December 2020 Review feedback section below for links.

Discussion notes from Topic Call, January 2021

Topic briefly mentioned but currently a lower priority than other development items discussed.

Comparison of VM/guest Argo interface options

The Argo hypervisor interface to virtual machines is a public Xen interface and narrow, with only a small number of operations - currently four,
though likely to increase by a few with v4v integration.

There are also multiple Argo interfaces internal to domains:

between drivers within the Linux Operating System kernel

between drivers within the Windows Operating System kernel

between the Operating System kernel and Argo tools in userspace
eg. runtime firewall configuration

between the Operating System kernel and Argo libraries in userspace
eg. device nodes to support data stream abstractions

between Argo libraries and client applications
eg. for interdomain DBUS communication

There are several options for the interface between the Linux kernel and userspace, to be reconciled as part of the work to take an Argo device
driver into the upstream mainline Linux kernel.

Interface Name Upstream
Considerations

Pro properties Con properties Frontend consumers Backend consumers

VirtIO-Argo transport
driver

Destination:
mainline Linux
kernel, via the Xen
community

Argo will need to
become security-
supported in Xen

Enables use of
existing mainline
Linux VirtIO virtual
device drivers,
expanding the
available virtual
device types
without requiring
development or
maintenance

Mandatory Access
Control
enforcement

VirtIO interfaces are
developed by a
standards committee
(OASIS), so can move
slower

Mainline Linux VirtIO
device drivers

None

Existing OpenXT
Linux Argo device
driver

Not acceptable Tested and
functional over an
extended period

Implementation is
unsuitable for further
development

Existing libargo

Interposer library

Interdomain
DBUS

Argo firewall
configuration tool

libxl state
machine for VM
lifecycle,
indirectly

Bromium uXen v4v
device drivers, straight
port to Argo: VSock
interface

Already present in
uXen software
distribution

For mainline
Linux, or Xen:
Unacceptable
override of
AF_VSOCK for a
non-vsock
interface, will
require resolution

Strong code
foundation for
future development

Simpler interface
and
implementation
than the current
OpenXT driver

AF_VSOCK use needs
resolving

Potentially
OpenXT service
VMs; though
VirtIO-Argo may
be better suited

Ported uXen v4v
storage and
network drivers

Ported libargo

OpenXT platform VMs

Bromium uXen v4v
device drivers, port to
Argo and expose char
device

char device could be a
challenge to justify

Functional even when
kernel is configured
without networking
support

Non-standard char
IOCTL interface rather
than a networking
standard

Ported uXen v4v
storage and
network drivers

Ported libargo

OpenXT platform
VMs

Ported libargo

Ported interposer

Potentially a
backend to
VirtIO-Argo - to
be determined

Bromium uXen v4v
device drivers, port to
Argo and expose
network device

network device
interface needs to be
evaluated for upstream
acceptability

Could avoid exposing
Argo to userspace at all

Requires kernel
configuration that
includes
networking

Limited interface if
networking-only,
as does not
expose all wanted
/needed functions

Ported uXen v4v
storage and
network drivers

Ported libargo

OpenXT platform
VMs

Ported libargo

Ported interposer

Potentially a
backend to
VirtIO-Argo - to
be determined

Bromium uXen v4v
device drivers, port to
Argo and expose both
char and network
devices, each optional
via KCONFIG

Larger aggregate driver
size for upstreaming
work

Flexible

supports standard
networking
interface
expectations

Potentially
OpenXT service
VMs; though
VirtIO-Argo may
be better suited

OpenXT platform
VMs

Ported libargo

Ported interposer

char interface can
support Argo
firewall and misc
functions + comms
when networking
not present

Ported uXen v4v
storage and
network drivers

Ported libargo

Potentially a
backend to
VirtIO-Argo - to
be determined

Xen IOREQ for
connection to VirtIO-
Argo

Appropriate for Xen
community, given
current VirtIO IOREQ
activity

Adheres to
existing Xen
architecture

Can simplify a
userspace device
model
implementation

Requires use of
emulation infrastructure
in the hypervisor and a
privileged domain,
foreign memory
mapping privilege,
grants and event
channels

None Device emulators for
providing virtual
devices

Considerations on system architecture for the new driver structure

Changes to the software that will run in the guests:
This will affect evaluations of Xen systems that adopt VirtIO-Argo software:

Xen device drivers may not be required within guests any more, since the VirtIO network and block alternatives can be
operational instead.

VirtIO device drivers may be required within guests and will most commonly be obtained from inclusion in the upstream
Linux kernel.

Xenstore may no longer be required to support guests running with virtual devices enabled.

Changes to the software that will run in the platform VMs:
VirtIO virtual device emulation software will support guest virtual devices

XSM/Flask policy will have granular control over guest access to virtual devices

Will not require shared memory for device driver operations

Toolstack changes
VirtIO-Argo will not require xenstore, although QEMU may have dependency on it

XSM Argo firewall will not require libxl hooks to the VM lifecycle state machine to configure the Argo firewall, instead
enforcement will be applied by a static system XSM policy

Hypervisor software changes
A different selection of hypervisor functionality will be enabled and disabled via KConfig options

some options will become mandatory: eg. Argo, XSM

some options may no longer be mandatory

Multi-hypervisor systems:
There have been design discussions about how to enable communication with Argo between VMs at different levels of nested
hypervisors: this can then be applied to the VirtIO-Argo use case for Argo. It will enable driver domains to be hosted at different
levels of nesting, and hosted on different hypervisors.

Initial Use Case: GPU remoting over VirtIO for interdomain graphics

The Chromium Linux kernel has a , also known as virtio-wayland, that implements a transport for the device driver virtio_wl Wayland
protocol over VirtIO, proxying the Wayland protocol socket stream over VirtIO queues.

This enables any Wayland compositor to use VirtIO for connections between client applications and the display, so a single
desktop VM can render applications running in remote VMs.

This technology was developed for Chromium OS to enable to run Linux applications within sandboxes.crosvm

Note: As a display technology that uses framebuffers, the VirtIO Wayland driver allows the guest to request shared memory file
descriptors and implementing handling for these regions will be required in addition to the implementation of Argo as the transport for the
VirtIO virtqueues.

To be explored: opportunities for collaboration with EPAM and Qubes.

Reference: A Technical Overview of virtio-wayland

December 2020 Review feedback

Response with multiple points from Jean-Philippe Ouellet:
Interest in ensuring interface support for capability-oriented policy enforcement models

Method and interfaces for device enumeration and hotplug queried: to be determined

Interest in userspace interfaces to Argo, with respect to the existing userspace support provided for the grant tables

Granular disaggregation of backend device-model providers desirable

Asynchronous non-blocking send primitives could be useful for increased scalability

https://chromium.googlesource.com/chromiumos/third_party/kernel/+/8613cd9496facfd7f38c5b4cc75e8484b6702af1/drivers/virtio/virtio_wl.c
https://wayland.freedesktop.org/
https://chromium.googlesource.com/chromiumos/platform/crosvm
https://alyssa.is/using-virtio-wl/
https://groups.google.com/g/openxt/c/yKR5JFOSmTc/m/dSHBFIHRAgAJ

Need to evaluate the Linux device driver interface to userspace for flexibility:
prefer “can write N bytes” or “how many bytes can be written?” over “try to write N, only wrote M + EAGAIN”

latter can be implemented over former but not vice-versa

matters for userspace for backpressure to peer userspace without buffering

matters for ensuring truth of durability of writes

affects cross-domain EPIPE boundary correctness

ref: Qubes porting vchan from Xen to KVM vsock

Some significant VirtIO drivers explicitly use shared memory eg. for framebuffers
virtio-fs (DAX-like fs backing to share page cache); virtio-gpu, virtio-wayland, virtio-video

Projects added above following and :feedback from Roger Pau Monné Julien Grall
Hypervisor-agnostic MSR interface to enable use of VirtIO-Argo transport driver with other hypervisors, with reference to the
specifics of the x86 and Arm architectures

Argo currently delivers notifications to guests via Xen event channels; it may be “better if interrupts are delivered using a native
mechanism, something like MSI delivery by using destination APIC ID, vector, delivery mode and trigger mode.”

Related material references from Rich Persaud:
PX: an OSS L0 “Protection Hypervisor” in the Hardened Access Terminal (HAT) architecture presented by Daniel Smith at the
2020 Xen Design and Developer Summit: https://youtube.com/watch?v=Wt-SBhFnDZY&t=3m48s

PX is intended to build on lessons learned from , and L0 hypervisors:IBM Ultravisor HP/Bromium AX AIS Bareflank
Notes from Dec 2019 meeting in Cambridge, Day 2 discussion included L0 nesting hypervisor, UUID
semantics, Argo, communication between nested hypervisors

Xen Summit 2020 Bareflank design session notes

In the long-term, efficient hypervisor nesting will require close cooperation with silicon and firmware vendors. Note that Intel is
introducing TDX (Trust Domain Extensions):

https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html

https://www.brighttalk.com/webcast/18206/453600

Recent papers from Shanghai Jiao Tong University, on using hardware instructions to accelerate inter-domain :HMX
March 2019: “SkyBridge, a new communication facility designed and optimized for synchronous IPC in microkernels”
https://ipads.se.sjtu.edu.cn/_media/publications/skybridge-eurosys19.pdf

July 2020: “UnderBridge” … “a redesign of traditional microkernel OSes to harmonize the tension between messaging
performance and isolation”
https://ipads.se.sjtu.edu.cn/_media/publications/guatc20.pdf

Related material

VirtIO & Argo

Analysis of Argo as a transport medium for VirtIO

New Linux Driver for Argo

Argo : Hypervisor-Mediated data eXchange : Development

“Argo: VirtIO” presented to the Automotive Grade Linux Virtualizaton Experts Group, August 2020
Slides

Mailing list post

XCP-ng blog: Device Emulation in the Xen Hypervisor for HVM Guests

A Technical Overview of virtio-wayland

Source for this Document

This document is developed and made available on the OpenXT wiki at the following location:

VirtIO-Argo Development: Phase 1

License of this Document

Copyright (c) 2020-2021 BAE Systems. Created by Christopher Clark and Rich Persaud.
This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit .https://creativecommons.org/licenses/by/4.0/

https://lists.archive.carbon60.com/xen/devel/607332#607332
https://lists.archive.carbon60.com/xen/devel/607380#607380
https://lists.archive.carbon60.com/xen/devel/607243#607243
https://youtube.com/watch?v=Wt-SBhFnDZY&t=3m48s
https://www.platformsecuritysummit.com/2019/speaker/hunt/
https://www.platformsecuritysummit.com/2018/speaker/pratt/
https://youtube.com/channel/UCH-7Pw96K5V1RHAPn5-cmYA
https://lists.archive.carbon60.com/xen/devel/577800
https://lists.archive.carbon60.com/xen/devel/577800
https://lists.archive.carbon60.com/xen/devel/591509
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://www.brighttalk.com/webcast/18206/453600
https://wiki.xenproject.org/wiki/Argo:_Hypervisor-Mediated_Exchange_(HMX)_for_Xen
https://ipads.se.sjtu.edu.cn/_media/publications/skybridge-eurosys19.pdf
https://ipads.se.sjtu.edu.cn/_media/publications/guatc20.pdf
https://openxt.atlassian.net/wiki/spaces/DC/pages/1348763698
https://openxt.atlassian.net/wiki/spaces/DC/pages/1333428225/Analysis+of+Argo+as+a+transport+medium+for+VirtIO
https://openxt.atlassian.net/wiki/spaces/DC/pages/775389197/New+Linux+Driver+for+Argo
https://openxt.atlassian.net/wiki/spaces/DC/pages/737345538/Argo+%3A+Hypervisor-Mediated+data+eXchange+%3A+Development
https://lists.automotivelinux.org/g/agl-dev-community/attachment/8595/0/Argo%20and%20VirtIO.pdf
https://lists.automotivelinux.org/g/agl-dev-community/message/8595
https://xcp-ng.org/blog/2020/06/03/device-emulation-in-the-xen-hypervisor/
https://alyssa.is/using-virtio-wl/
https://creativecommons.org/licenses/by/4.0/

	VirtIO-Argo Development: Phase 1

