
Elisa Workshop 2019, Cambridge UK

Lars Kurth
Community Manager, Xen Project

Chairman, Xen Project Advisory Board

lars_kurth

OpenXT, SecureView

(desktop, laptops, tablets)

Defense Applications

Defense Applications Xenon Hypervisor family (used on aircraft carriers, …)

First time formal methods were applied on a Xen fork

CC EAL5+ certification laid some groundwork for safety

Cloud Computing Amazon Web Services, Tencent, Alibaba Cloud, `

IBM SoftLayer, Rackspace, …

Server Virtualization
Linux Distros, Citrix Hypervisor, Huawei UVP, XCP-ng

ARLX/Virtuosity OA, Bromium

uXen, Crucible Hypervisor

Embedded Defense /

Security Applications

Embedded/

Automotive Virtuosity, XILINX Xen Zynq, Perseus,

GlobalLogic Nautilus, EPAM Fusion

General purpose desktop and mobile Virtualization
XenClient, NxTop, Neosphere, Samsung, Qubes OS

slideshare.net/xen_com_mgr/

scale17x-thinking-outside-of-the-conceived-tech-

comfort-zone

• DornerWorks: OpenGroup FACE
certified Virtuosity OA (military)

• XILINX: generic embedded stack

• EPAM: automotive stack

• But: all open source, but not all is up
streamed

• Some use in production:
In a non-safety context
In safety contexts where safety can be
isolated outside of Xen

• NASA funds Dornerworks to integrate
the Xen Project Hypervisor into NASA's
new High Performance Space
Computing Platform (HPSC)

• Significant funding from a group of
vendors to re-write Xen on Arm port for
embedded likely (originally designed for
servers)

• Side channel attacks ➜ Re-architect

Xen core (AWS), use of TLA+ (Citrix)

• Other funding routes being considered
(e.g. HORIZON 2020, US grants, …)

• Multiple consultancies which know the
Xen codebase and various safety
standards (DornerWorks, StarLabs.io
and EPAM which is nascent)

• All have experience in upstreaming
functionality to Xen

• Today: DO 178 centric

• Study by DornerWorks to establish feasibility
of whether Xen on Arm could be certified to

DO 178b Level A ➜ Cost matrix & Product

family (ARLX, Virtuosity OA)

• Study by HORIBA MIRA to assess whether it
is possible to safety certify a subset of the

Xen Project ➜ EPAM ref platform

• Fill functional gaps (RT, reduce code size,

configurability, …) ➜ Reference platforms

Early Work
(2012 –
today)

Safety and
Xen

Expertise

Existing
Reference

Architectures

Unlock
Funding

for Safety
Activities

Schedulers: ARINC, RTDS, Null and other real-time support
Laid the foundation for embedded use-cases and use of Xen as a partitioning HV
Low latency and real-time support

A minimal Xen on Arm Configuration
< 50 KSLOC of code for a specific HW environment

PV drivers (and in future virtio drivers) and GPU mediation for rich IO
Available in various upstreams

OP-TEE virtualization support
Both in Xen and in OP-TEE

Dom0less Xen
For now: allows booting VM’s without interaction with Dom0, but Dom0 still exists
2020: an architecture without a Dom0 and/or an RTOS as Dom0

Schedulers: ARINC, RTDS, Null and other real-time support
Laid the foundation for embedded use-cases and use of Xen as a partitioning HV
Low latency and real-time support

A minimal Xen on Arm Configuration
< 50 KSLOC of code for a specific HW environment

PV drivers (and in future virtio drivers) and GPU mediation for rich IO
Available in various upstreams

OP-TEE virtualization support
Both in Xen and in OP-TEE

Dom0less Xen
For now: allows booting VM’s without interaction with Dom0, but Dom0 still exists
2020: an architecture without a Dom0 and/or an RTOS as Dom0

Key Point:

Xen on Arm, turned out to be a great open

source hypervisor for embedded and

mixed-criticality use-cases in theory

Despite having been designed for servers!

Tools Challenges ⬌ Funding

Community Challenges ⬌ Trust & Confidence

Funding

⬌ Confidence

Requires major changes to the software

Requires tools, infrastructure and expertise

Requires changes in how FOSS projects work
Until recently: assumption was that the two worlds cannot work together

Tooling has a huge impact on Community Challenges
We need tools (ideally FOSS tools) that fit into our Git and CI workflow

Xen Hypervisor (≤ 50 KSLOC)

Dom 0

Linux or

*BSD

Future:

RTOS

CPU

VM 1 VM 2VM 3

CPU

Dom0less VMs loaded by uBoot
and booted by Xen (not Dom0),
pinned to a CPU via the Null
scheduler and I/O handled by
device assignment

Dom0 completes boot after VM 1
and VM 2. Static set-up

CPU

VM 1 VM 2

CPU

Xen Hypervisor

Ongoing work to fully implement true
Dom0less for small systems

• Shared memory and interrupts for VM-to-VM
communications

• PV frontends/backends drivers for Dom0-less VMs

Dom0less initial safety certification scope

slideshare.net/xen_com_mgr/elc2019-static-partitioning-made-simple

10

Mix Safety Digital Cockpit

In-Vehicle Computer

Subgroups meet at least every other week. Partly resourced

Community Reps
Lars Kurth (chair and project mgmt)

George Dunlap (committers)

Stream Owners and Implementers

Other Members

Assessors

Lars Kurth

Create a understanding between the community and
industry

Terminology, Concepts, etc.
How safety certification works: look at different standards, routes,
requirements
Explain assets and processes

Establish community “red lines”

Principles the community can agree to or would object to
What level of change would be acceptable
Identify potential obstacles

Split development model with an open and a closed part

Everything that is valuable to the wider community ideally in the open part,
e.g. documentation, some tests, traceability, automation and infrastructure,….

Everything that creates code churn if it wasn’t open as much as possible:
e.g. coding standards (MISRA)

Changes to the development workflow have to be kept minimal

There must be a benefit the community
Otherwise the community wont carry

There are long-term implications for the community

Make-up, scalability, decision making, conflicts – need to be managed
No major new barriers for contributors can be introduced

Goal:
significantly reduce the cost for
users to safety certify Xen
derivates

Share as much burden as possible
by collaborating upstream

Business

Case

Customer

Requirements

System

Requirements

High-Level

Design

Detailed

Design

Software Development

Unit

Testing

Subsystem

Verification

System

Verification

System

Validation

Operation and

Maintenance
Changes

and

Upgrades

System Validation Plan

System Verification Plan

Subsystem Verification Plan

Unit / Test Plan

Implementation

Development Processes

How do you map this

onto a FOSS development process?

How do you get community buy-in?

Traceability: how do you prove that

design and architecture satisfies

requirements and tests verify these

also?

1

2

4
1

Not at at all, or outside

Not a huge effort to retrofit

Valuable for developers & users

Does not change often for a Hypervisor

2
Frequently as good or better

than proprietary. Process discipline

4
A subset of this usually exists, but

typically tests code, not

requirements/specifications.

That’s the most expensive part to

address.

3

3
Not at all. Difficult to maintain

manually. Should not change that

often

1

2

1 Documented Requirements

2
Design, Architectural and API

documentation
3

3
Traceability info:

Between requirements

Between requirements and other

docs

Between requirements and code

With appropriate tooling and

Information Architecture this can

be done in a git-workflow

Candidate tool: DOORSTOP

1

2

4
1 Documented Requirements

2
Design, Architectural and API

documentation

4
Validation:

Can be outside of upstream

Needs a feedback loop to deal with

breakage – like OpenStack 3rd

party CI

3

3
Traceability info:

Between requirements

Between requirements and other

docs

Between requirements and code

Picked MISRA C as an example, because …

it is representative of the hardest type of community problems that you

should expect if you look at safety certification

Picked hardest and controversial rules to see what

would happen!

We did not expect to succeed !

MISRA C spec is proprietary

Rule text cannot be copied into a posted patch series ➜
lack of clarity, lack of rationale: leading to unnecessary debate

Interactions w compilers, HW, assembly code problematic

Ended up with 11 iterations and man weeks of review effort

Some rules will create a flame-war if there is a single argumentative
maintainer

E.g. MISRA C:2012, 15.7
"if ... else if" constructs should end with "else" clause

if (x == 0) {

doSomething();

} else if (x == 1) {

doSomethingElse();

} else {

error();

/* or justification why no action is taken */

}

Possibility of MISRA C Deviations encourage arguments

Deviations: justification of a class or instance of non-compliance
Deviation Permits: previously approved deviations for a use-case

An expert (assessor) is needed to advise the project on a case-by-case basis
Probably needs funding

Community Scalability

Code review process encourages too much discussion, if there is no up-front
plan on how to approach a disruptive set of changes

Fix: A priori agreed strategy and plan on how to approach this

Low customization route
Candidates: IEC 61508 or ISO 26262

Build Confidence and
Unlock Funding / solve Community problems iteratively
Chicken and egg problems

Focus on left side of V model first
While refreshing the Xen on Arm port at the same time

– Effort to identify key APIs and improve documentation (started)

– Code review map (started)

Need docs & traceability tooling story:
Ideally a cross-project standard using tools and Information Architecture
Make it easy to keep artefacts up-to-date

Does ELISA have a role in this?

CI Loop changes
Front-load CI: do as much as possible before code review (in progress)
Use bots and automation (in progress)
More tests in “simulated environments” – capacity problem
3rd party CI loop hooks

Coding Standards
Need more experiments: initially keep clear of MISRA
Need a process to prioritize rule implementation
Compliance tooling and reporting that fits into CI (issue: © of MISRA)
Goal: Minimize unnecessary discussion

Areas which are not yet clear
Testing and Validation
Safety management system that can coexist with generic Xen mainline
development
…

Similar Development Process and Culture
Some differences in areas such as Release Management, CI
Infrastructure, Vulnerability Management, Leadership team vs Dictator

Code Size and Community Size
Linux is 1-2 orders of magnitude larger

Community Make-up
Linux: dominated by cloud and server vendors
Xen: has areas which are exclusively driven by embedded vendors (aka
Xen Arm) with some common code affecting all users. While x86 is
cloud, server and security applications

Level Requirements Application Cost with Experience

DAL E The software must exist Infotainment

Failure is a minor inconvenience

0.11 hour / SLOC

DAL D High-Level Docs/Tests Instruments

Failure can be mitigated by operator

0.13 hour / SLOC

DAL C Low-Level Docs/Unit Tests,

Statement Coverage, and

Code/Data Coupling

Analysis

0.20 hour / SLOC

DAL B Branch Coverage Engine Control

Failure could kill someone without

warning

0.40 hour / SLOC

DAL A Source to Object Analysis

and MC/DC Coverage

0.67 hour / SLOC

Credit/Source: Dornerworks / XPDS14 - Xen and the Art of Certification.pdf

Level Requirements Application Cost with Experience

DAL E The software must exist Infotainment

Failure is a minor inconvenience

0.11 hour / SLOC

DAL D High-Level Docs/Tests Instruments

Failure can be mitigated by operator

0.13 hour / SLOC

DAL C Low-Level Docs/Unit Tests,

Statement Coverage, and

Code/Data Coupling

Analysis

0.20 hour / SLOC

DAL B Branch Coverage Engine Control

Failure could kill someone without

warning

0.40 hour / SLOC

DAL A Source to Object Analysis

and MC/DC Coverage

0.67 hour / SLOC

Credit/Source: Dornerworks / XPDS14 - Xen and the Art of Certification.pdf

3-4 times as much

without experience

0

5

10

15

20

25

30

35

40

45

30 KSLOC 50 KSLOC 100 KSLOC 200 KSLOC

Cost in man years

DAL C

DAL B

Already investment in

the order of

20-30 man years

on functionality

An investment of 5-10

man years for

safety is not

outlandish

