Development Process and Traceability

Operation and Changes and
Maintenance Upgrades

How do you map this
onto the Xen Project
development process?

How do you get community buy-in?

Detailed

Software Development

Implementation
Development Processes

What must be upstream: all key inputs ...

1
2

Requirements documentation

Design, Architectural and API
documentation

Traceability info:

Between requirements

Between requirements and other docs
Between requirements and code

Validation:

Can be outside of upstream

Needs a feedback loop to deal with
breakage

Needs to trace to requirements (or a
written down test case which does)

Is there a tool which fits into a
GIT workflow

Doorstop

https://doorstop.readthedocs.io/en/latest/
https://github.com/jacebrowning/doorstop

https://doorstop.readthedocs.io/en/latest/
https://github.com/jacebrowning/doorstop

Installation

Straightforward via

Start using doorstop within a git tree

Create Document Hierarchy

cd docs

doorstop create REQ requirement

doorstop create —p REQ SYS requirements/system

cd ../xen/common

doorstop create —-p SYS HLR-common requirements/high-level
doorstop create —p HLR—-common LLR-common requirements/low-level
cd ../arch/arm

doorstop create —p SYS HLR-arm requirements/high-level

doorstop create —p HLR-arm LLR-arm requirements/low-level

cd ../..

This Creates

$ git status

new file: docs/requirements/.doorstop.yml

new file: docs/requirements/system/.doorstop.yml

new file: xen/arch/arm/requirements/high-level/.doorstop.yml
new file: xen/arch/arm/requirements/low-1level/.doorstop.yml
new file: xen/common/requirements/high-level/.doorstop.yml
new file: xen/common/requirements/low-level/.doorstop.yml

Unigue name for document types per directory: e.g. HLR-common, HLR-arm

$ doorstop

REQ

L—— SYS

—— HLR-common

LLR—common

L— HLR-arm

L—— LLR—arm

This Creates

$ cat xen/common/requirements/high-level/.doorstop.yml

settings:
digits: 3
parent: SYS
prefix: HLR-common
sep: '’

Human readable config files

Command line interface is similar to git and fairly intuitive

Proliferation of .yml files

Yml files not necessarily the ideal format for presenting information in-tree
Yet another docs source file format: .rst, .markup

Note: there are several active discussions in the doorstop community about
changing all of the above issues

Adding Requirements

In xen.git:

$ doorstop add REQ ——edit -T vi

building tree...
added item: REQQO1 (@/docs/requirements/REQQOQ1.yml)

active: true
derived: false

header: ''

level: 1

links: []

normative: true

ref: '!

reviewed: f8b5fe23e5199f5e03a851f6f9e61639
text: |

Dom@less VMs

Xen shall be able to start Virtual machines in parallel to Dom@

There was a bug for which | raised a an issue, which has been fixed within two days but is not yet in a release

$ doorstop review REQ0O1

Adding further requirements

SYS001: Bootloader loads DomOless VM
The Xen bootloader loads the VM image into memory

SYS002: Text file based config for DomOless VMs
A text file is used to configure DomOless VMs

HLR-arm001: DomOless config via device-tree
Device trees shall be used to configure DomOless VMs on Arm

$ doorstop link SYS001 REQ00O1
$ doorstop link SYS002 REQ001
$ doorstop link HLR-arm@@l SYS002

Doorstop

Then, publish a report in htm| = show this in the file system
$ doorstop publish all ../reqgqvl.html

Missing Links, Suspect Links, ...

SYS001: The flap system shall
extend to “full position” when
requested within 30 = 1 seconds.

HLROO1: The software HLROO1: The software

shall toggle position shall enable the drive
states when... motor...

LLROO1: The fsm_loop LLR002: The fsm_loop LLR002: The fsm_loop
function shall ... function shall ... function shall ...

Review and edit the dependent requirements
$ doorstop clear LLROO1 LLRO2

BUT:
only does this for links, not references

Uses a fingerprint validation mechanism to identify
whether a requirement has been edited and
invalidates any requirements that link to a changed

requirement

Referencing Source Code

E.g. a document, function, test case, ...

ref

External reference. An item may reference an external file or a line in an external file. An external
reference is displayed in a published document.

Doorstop will search the project root and it's sub-directories for a filename matching the specified
reference. If multiple matching files exist, the first found will be used.

If a file is not found, Doorstop will also search the contents of all text-files in the project root and it's
sub-directories. If a line contains the referenced keyword, Doorstop will reference the file and line
number where it found the keyword. If the keyword is found in multiple lines or files, the first found
will be used.

Example: Reference keyword
Afile is considered a text-file unless its file extension is listed in sk1p_exts (settings.py).

ref: 'TSTeOl’

The value of this attribute contributes to the fingerprint of the item.
References the filename and line number of a text-file that contains the keyword "TST001".

Example: Reference file
ref: 'test-tstool.c’

References afile called "test-tst001.c".

References to Source Code

E.g. a document, function, test case, ...

$ vi docs/requirements/REQ001.yml
ref: 'docs/features/dom@less.pandoc’
$ doorstop review REQQ001

$ doorstop

Validation suddenly takes a long time (1+ minute)
Searches the tree

Publish a report ... crashes
Does not crash with ref: 'dom@less.pandoc’

$ doorstop publish all ../reqgqv2.html

References to Source Code

E.g. a document, function, test case, ...

$ vi xen/arch/arm/domain_build.c

/ *
* HLR-armool.1
* Some text specific to the requirement

*/
void _ init create_domUs(void)

{
$ vi xen/arch/arm/requirements/high-level/HLR-arm@0l.yml
ref: 'HLR-arm@01l.1’

$ doorstop publish all ../reqgv2.html

How it shows references to source

Table of Contents 1 DOMOIless VMs reqoo1

Xen shall be able to start Virtual machines in parallel to DomO
| 1 DomOless VMs

docs/features/dom@less.pandoc

Child links: SYS001 Bootloader loads Dom0Oless VM, SYS002 Text file based config for DomOless VMs

Table of 1.0 DomOless config via device-tree HiLR-armoo1

Contents Device trees shall be used to configure DomOless VMs on Arm

1.0 DomOless config
via device-tree

xen/arch/arm/domain_build.c (line 2075)

Parent links: SYS002 Text file based config for DomOless VMs

References are currently re-desighed

See https://github.com/jacebrowning/doorstop/issues/365
Addresses some of the issues

https://github.com/jacebrowning/doorstop/issues/365

Levels and documents

cd docs

doorstop create REQ requirement

cd ../xen/common

doorstop create —-p REQ HLR-common requirements/high-1level

cd ../arch/arm
doorstop create —p REQ HLR-arm requirements/high-1level

cd ../..

Document headers and levels

$ doorstop add REQ ——edit —-T vi
Dom@less VMs

Add the ref also
normative: false # This 1is essentially just a headline

$ doorstop add REQ ——edit —-T vi
The Xen bootloader shall load the VM image into memory

$ doorstop add REQ ——edit —-T vi
A text file shall be used to configure Dom@less VMs

$ doorstop add HLR-arm ——edit -T vi
Device trees shall be used to configure Dom@less VMs on Arm Add the

Add the ref also
$ doorstop link HLR-arm@@1l REQQO3

Validation and Publication

$ doorstop review all

$ doorstop
building tree...
loading documents...

validating items...
WARNING: REQ: REQ©@@2: no links from child document: HLR-common

WARNING: REQ: REQ©®O2: no links from child document: HLR-arm
WARNING: HLR-common: no 1items

REQ

— HLR-common

L HLR-arm
$ doorstop publish all ../reqv3.html

Tree Structure: Table of 1.0 DomOless VMs

Contents
e 1.1 REQO002
| | 1.0 DomOless VMs
|— HLR-common 1.1 REQOO2 The Xen bootloader shall load the VM image into memory

| | 1.2RrREQO03

L— HLR-arm 1 .2 REQOO3

A text file shall be used to configure DomOless VMs

PllbliShed Documents: Child links: HLR-arm001

e HLR-arm Table of 1 .0 HLR'arm001

e HLR-common
* REQ

Contents Device trees shall be used to configure DomOless VMs on Arm

| 1.0 HLR-arm001 xen/arch/arm/domain_build.c (line 1223)

Parent links: REQ003

Item Traceability:

HLR-
REQ common HLR-arm

REQo003 HLR-armoo1

Making REQOO1 not a headline

And make REQO02 & REQOO03 children of REQ001

Tree Structure:

REQ

F— HLR-common

L— HLR-arm

Published Documents:

e HLR-arm
e HLR-common
* REQ

Item Traceability: REQO02 does not link to a requirement in HLR-arm
REQ MR grpom But should show HLR-arm001
REQoo1 Possibly a bug or usage error

Thus: using non-headline REQs to group requirements is of limited use

Summary

Issues: may be bugs, config or usage issues
* Under active development
« Community is responsive and has been fixing raised bugs

Default’s handling not looked into: e.g. -T vi
Outbound references are kind of useless for tracing

The core functionality of creating links between document artifacts seems to
work reasonably well

Lots of individual files =» not really ideal

 Embed in code and use a script to generate yaml files = breaks workflow
* Extend tool, such that requirement “docs” can be embedded in source files

* Most code is the GUI/web editor/doc generation
* E.g.doorstop add REQ —to mysourcefile.c ——edit —-T vi

Interesting Tickets

Features

 RFC:"One document - one markdown file" (instead of multiple YAML files)
https://github.com/jacebrowning/doorstop/issues/401

e Discussion: Markdown with YAML header
https://github.com/jacebrowning/doorstop/issues/295

* Feature Proposal: Connect a requirement to multiple refs
https://github.com/jacebrowning/doorstop/issues/365

e Plug-in System
https://github.com/jacebrowning/doorstop/issues/386

Bugs

e https://github.com/jacebrowning/doorstop/issues/411 — Patch posted with fix within 1 day

» https://github.com/jacebrowning/doorstop/issues/412 — Cleanup proposal by Lars to fix some issues — quick
response

https://github.com/jacebrowning/doorstop/issues/401
https://github.com/jacebrowning/doorstop/issues/295
https://github.com/jacebrowning/doorstop/issues/365
https://github.com/jacebrowning/doorstop/issues/386
https://github.com/jacebrowning/doorstop/issues/411
https://github.com/jacebrowning/doorstop/issues/412

